
Database Unit Testing
Fundamentals

 Eric Selje
 April 6, 2013

Presenter
Presentation Notes
Did a couple of SQL Saturdays last year
Speak at various conferences
User Group

Eric Selje

 Developer Since 1985
 dBase/FoxBase/FoxPro since 1986
 .Net / SQL Server more recently

 Salty Dog Solutions, LLC (Consulting)
 Mobile
 Web
 Database
 Legacy

 User Groups
 MadFox since 1995
 Geek Lunch

Presenter
Presentation Notes
Did a couple of SQL Saturdays last year
Speak at various conferences
User Group

Agenda

 What is “Unit Testing”
 What does it mean to “Unit Test” a database?
 How to do it in SSMS
 Manually coding
 tSQLt Framework
 SQL Test

What is “Unit Testing”

 Code that exercises a specific portion of your
codebase in a particular context.

 Returns a simple pass/fail based on an
expected known result.

 Inspect the results to know how things stand
and possibly act on it.

Presenter
Presentation Notes
Not a thing you urologist does.
Does not test more than necessary
May be more than one test for each

Act = Continuous Integration�

Goals

 Catch mistakes as early in the process as
possible.

Presenter
Presentation Notes
One goal of unit testing is to catch mistakes as early in the process as possible.
less expensive
I’m sure someone here can find the stat on how much less expensive, but it’s considerable

Goals

 Keep your units of code as small and testable
as possible.
 Tighter, more maintainable code

Presenter
Presentation Notes
Another goal is to keep your units of code as small and testable as possible. (Side note: One of the premier reasons you'll here about why there's suddenly a movement towards developing web apps with 'MVC' style is that MVC exposes the functions in a testable way).

Goals

 Ensure that you have a good idea what the
code is supposed to do before you write it.

Presenter
Presentation Notes
In fact, some will say you should write the tests before you even write the code (test-driven development) It's a tenet of "Extreme Programming" . The idea is that you can't write a test unless you understand what you what the function is supposed to do, so you have to focus on requirements before writing the code.

It's a nice idea, but it's a luxury that few of us who've inherited code actually have.

Goals

 They give you confidence that your code
works as you expect it to work.

Presenter
Presentation Notes
[look at audience]
As a developer I’m a little jealous of DBAs because it seems as if they’re well paid and their job is easy as long as they don’t break things too badly.

I can refactor my code without worrying if I'll break it. Well that's not true: I will break it, but at least now I'll know I broke it without relying on the most usual kind of test: "User Testing".

Goals (for Database folks)

Can ensure CONFORMITY with Standards

Presenter
Presentation Notes
SQL Cop coming later

Eg Naming conventions

A “meta” test

What to Test?

 Not possible to test everything
 You’d like to hit 75% coverage

 Every method, possibly multiple tests
 Normal Conditions
 Edge Conditions
 Null / Empty parameters
 Out of bound conditions

Presenter
Presentation Notes
Really not possible to test every condition, but it's a good practice to test every method and send it as many edge conditions as you can think of.

For example I wrote a routine to authenticate users. Simple function: Take a username and a password and returns whether it's valid.

I wrote multiple unit tests for that one method.

One to confirm that a valid username (in any case)/login could actually login
One to confirm that an invalid username/password could not get in
One to verify that an empty/null username but valid password would not work
One to verify that an valid username but empty/null password would not work
One to verify whether a subset of a username along with a valid password would not work
(eg. If the user name was 'Administrator', did 'Admin' work?)

You wouldn't want to find out that works when your boss calls you up and tells you a customer reported that he got in with that.

Problems with Unit Testing

 More up-front time / work
 Less instant gratification
 Pays off on the back end

 Hard to justify to upper management
 “Squishy”
 Can’t prove it worked

Presenter
Presentation Notes
TDD

Unit Testing is not….

 Integration Testing in which we make sure
our individual modules work well together.
 Does the 'Delete' button on the U/I actually invoke the 'Delete' method in

the ORM properly and handle the result?
 Does calling the 'Delete' method in the ORM actually remove a record

from the database?

Unit Testing is not….

 System Testing, when you deliver your app to
the testers and they check it all out to make
sure it meets the requirements. Eg.
 load testing
 compatibility testing
 accessibility testing
 and many more.

Presenter
Presentation Notes
Testers: (let's be honest, the users, at which point it might be called Acceptance Testing)
Requirements: (you've got the requirements documented, right?)

Unit Testing is…

 Peace of Mind

Presenter
Presentation Notes
And who couldn’t use a little more of that?

Ask how many are unit testing now.

What does this have to do with
DATABASES?

Well, there IS code in databases
 Stored procedures
 Functions
 Constraints
 Views

Presenter
Presentation Notes
This is a database conference after all.

Let’s take a look at a very simple example…

Example #1

 Write a unit test to ensure our scalar function
returns what we think it should.

 Also, make sure it doesn’t return what we
don’t think it should. Test edge cases.

Presenter
Presentation Notes
Example Unit Test solution

testStatus1.sql

Example #2

 Write multiple unit tests for a function…

Presenter
Presentation Notes
testStatusAll

You may start to get the vague notion that managing these tests could get out of hand.

Bear with me..

Example #3

 How to test constraints?
 Embed in a TRANSACTION
 Try to add some bad data
 See if it threw an error
 End TRANSACTION

Presenter
Presentation Notes
Testing constraints means throw some data into the table to make sure you can’t stick bad data in there.

Be sure TRANSACTIONS are on – not a bad idea for all your tests.

Example #4a - Views

Old way of testing
1. Alter a view
2. Run view
3. Got data? Good to go!

Presenter
Presentation Notes
testTable.sql

Example #4b - Views

How to test if a View’s data went bad?
1. You’d have to have ‘saved’ a copy of your

view data before you make changes.
2. Make your changes
3. Get your new view data
4. Compare (um…how to do that?)

Presenter
Presentation Notes
testTable.sql

This is getting out of hand!

 We could write the unit tests in Visual Studio
 nUnit
 Sql Server Data Tools

 Requires a separate tool which we may not
have.

 It'd be nice if there was a framework for
writing unit tests that allowed us to remain
within SQL Server Management Studio.

Presenter
Presentation Notes
Session on SSDT coming up next

Hard to manage

AND unless we commit these tests using Source Control, they’re not shared w/ everyone else

tSQLt Framework

 http://tsqlt.org/
 tSQLt is a database unit testing framework

for Microsoft SQL Server.
 Features:
 Test are run within transactions
 Tests are grouped within a schema
 Output can go to a file that a CI tool can use
 …and more

http://tsqlt.org/

tSQLt Framework Installation

1. Download zip
2. Add scripts to a project (optional)

Comes w/ an example database…

Presenter
Presentation Notes
Because a database that is attached to an instance of SQL Server cannot be immediately trusted, the database is not allowed to access resources beyond the scope of the database until the database is explicitly marked trustworthy.

ALTER AUTHORIZATION can be used to change the ownership of any entity that has an owner

Let’s look at

Adding tSql to your database

1. Prep your database
1. ALTER AUTHORIZATION ON DATABASE TO

sa (Maybe)
2. SET TRUSTWORTHY ON

2. Run tSqlt.class script
 on each database to test

Presenter
Presentation Notes
This is why you don’t unit test a production database

Let’s take a look at what tSqlt.class does to our database:

Redo our tests in tSQLt

 Create a test class: tSQLt.NewTestClass
 Creates a new schema with that classname

 Create a test: CREATE PROCEDURE
 Schema should be the new class name
 Prefix the sp name with ‘test’

 Run the Test: tsqlt.Run <testName>

Presenter
Presentation Notes
tSQLt-1

EXEC tSQLt.NewTestClass 'AWTests';

-- Create a test within that Test Class
(stored procedure, prefix the name with 'test' or it won't run
...
alter procedure DAFUG.testStatus as
begin

DECLARE @status varchar(30)
DECLARE @expected varchar(30) = 'In Process'
SELECT @status = AdventureWorksLT2012.dbo.ufnGetSalesOrderStatusText(1)

exec tSQLt.AssertEquals @Expected=@expected, @Actual=@status, @Message='Status 1 did not return "In Process"'

end

Assert Yourself

 AssertEquals
 AssertLike
 % or _

 AssertEqualsString
 Varchar(Max) comparisons

Presenter
Presentation Notes
http://tsqlt.org/user-guide/assertions/assertequals/

Equals works with any variant
EqualsString works with VARCHAR(MAX)

http://tsqlt.org/user-guide/assertions/assertequals/
http://tsqlt.org/user-guide/assertions/assertequalsstring/

Assert Yourself

 AssertEqualsTable
 AssertResultSetsHaveSameMetaData

 FakeTable (remove constraints)

Presenter
Presentation Notes
If AssertEqualsTable fails, it will show the discrepency

Where did the table go?

http://tsqlt.org/user-guide/assertions/assertequalstable/
http://tsqlt.org/user-guide/assertions/assertresultsetshavesamemetadata/

Assert Yourself

AssertObjectExists

Presenter
Presentation Notes

Run All Tests in a Class

 One test per stored procedure
 tsqlt.RunTestClass <className>

 tsqlt.RunAll

Presenter
Presentation Notes
-- exec tsqlt.RunTestClass 'SQLSat206';

Faking It

Tips

 Filter the Stored Procedures to just see Tests
 Assign a hotkey to run tests (Tools, Options,

Environment, Keyboard,
EXEC tSQLt.RunAll; --)

 Create a template for creating a test
(thanks, @SQLAgentMan)

Not Enough?

 No Pretty Color Coding?

 I can't just doubleclick on my failed test to
edit it? Waah?

SQL Test

 RedGate
 Not Free
 $295 Standalone
 $1495 in SQL Developer Bundle
 SQL Source Control
 Continuous Integration

 Except for one lucky attendee at #SQLSat206

Presenter
Presentation Notes
Also SQL Toolbelt, which costs over $2500 but gives you over 16 tools
http://www.red-gate.com/products/sql-development/sql-toolbelt/

SQL Test

Gets you
• Nice GUI
• Color Coding
• SQL Cop Tests

Demo…

Presenter
Presentation Notes
Also SQL Toolbelt, which costs over $2500 but gives you over 16 tools
http://www.red-gate.com/products/sql-development/sql-toolbelt/

Continuous Integration

 Automatically run Unit Tests
 On a schedule
 When code is checked in
 Reject if fails
 Proceed with other tests if succeeds
 Compile the app
 Distribute

Presenter
Presentation Notes
like the free and popular CruiseControl or TeamCity

Never have errors again!

Conclusion

 Unit Testing is for Database People
 Discipline you to write testable code
 Reward you with easy to maintain code
 Fewer errors
 Save money
 Save time

 Conform to standards

Q&A / Comments

 What else would you consider testing?

Presenter
Presentation Notes
Think metadata

Does every foreign key have an index, for example
Are there any queries with SELECT *

Contact Me

Twitter: EricSelje
LinkedIn: saltydog

Resources

 Unit Testing Database with tSQLt
 Ten Things I Wish I'd Known
 48 SQL Cop Tests (Zip File)
 Using SQL Test in Continuous Integration, by

Dave Green
 How to write good unit tests
 Are Unit Tests overused?
 Test Driven Development

http://datacentricity.net/2011/10/unit-testing-databases-with-tsqlt-part-1-installation-and-setup/
http://www.simple-talk.com/content/print.aspx?article=1548
http://dl.dropbox.com/u/58229865/SQLCop%20Tests.zip
https://www.simple-talk.com/sql/sql-tools/using-sql-test-database-unit-testing-with-teamcity-continuous-integration/
http://wiki.developerforce.com/page/How_to_Write_Good_Unit_Tests
https://www.simple-talk.com/dotnet/.net-framework/are-unit-tests-overused/
http://en.wikipedia.org/wiki/Test-driven_development

	Slide Number 1
	Eric Selje
	Agenda
	What is “Unit Testing”
	Goals
	Goals
	Goals
	Goals
	Goals (for Database folks)
	What to Test?
	Problems with Unit Testing	
	Unit Testing is not….
	Unit Testing is not….
	Unit Testing is…
	What does this have to do with DATABASES?
	Example #1
	Example #2
	Example #3
	Example #4a - Views
	Example #4b - Views
	This is getting out of hand!
	tSQLt Framework
	tSQLt Framework Installation
	Adding tSql to your database
	Redo our tests in tSQLt	
	Assert Yourself
	Assert Yourself
	Assert Yourself
	Run All Tests in a Class	
	Faking It
	Tips
	Not Enough?
	SQL Test	
	SQL Test	
	Continuous Integration
	Conclusion
	Q&A / Comments
	Contact Me
	Resources

